A descent principle for the Dirac–dual-Dirac method

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Descent Principle for the Dirac Dual Dirac Method

Let G be a torsion free discrete group with a finite dimensional classifying space BG. We show that G has a dual Dirac morphism if and only if a certain coarse (co)-assembly map is an isomorphism. Hence the existence of a dual Dirac morphism for such G is a metric, that is, coarse, invariant of G. We get similar results for groups with torsion as well. The framework that we develop is also suit...

متن کامل

SADDLE POINT VARIATIONAL METHOD FOR DIRAC CONFINEMENT

A saddle point variational (SPV ) method was applied to the Dirac equation as an example of a fully relativistic equation with both negative and positive energy solutions. The effect of the negative energy states was mitigated by maximizing the energy with respect to a relevant parameter while at the same time minimizing it with respect to another parameter in the wave function. The Cornell pot...

متن کامل

A descent method for explicit computations on curves

‎It is shown that the knowledge of a surjective morphism $Xto Y$ of complex‎ ‎curves can be effectively used‎ ‎to make explicit calculations‎. ‎The method is demonstrated‎ ‎by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve ‎with period lattice $(1,tau)$‎, ‎the period matrix for the Jacobian of a family of genus-$2$ curves‎ ‎complementing the classi...

متن کامل

Translation Principle for Dirac Index

Let G be a finite cover of a closed connected transpose-stable subgroup of GL(n,R) with complexified Lie algebra g. Let K be a maximal compact subgroup of G, and assume that G and K have equal rank. We prove a translation principle for the Dirac index of virtual (g,K)-modules. As a byproduct, to each coherent family of such modules, we attach a polynomial on the dual of the compact Cartan subal...

متن کامل

An Asymptotical Variational Principle Associated with the Steepest Descent Method for a Convex Function

The asymptotical limit of the trajectory deened by the continuous steepest descent method for a proper closed convex function f on a Hilbert space is characterized in the set of minimizers of f via an asymp-totical variational principle of Brezis-Ekeland type. The implicit discrete analogue (prox method) is also considered.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 2007

ISSN: 0040-9383

DOI: 10.1016/j.top.2007.02.001